Tissue displacements during acupuncture using ultrasound elastography techniques.

نویسندگان

  • Helene M Langevin
  • Elisa E Konofagou
  • Gary J Badger
  • David L Churchill
  • James R Fox
  • Jonathan Ophir
  • Brian S Garra
چکیده

Acupuncture needle manipulation has been previously shown to result in measurable changes in connective tissue architecture in animal experiments. In this study, we used a novel in vivo ultrasound (US)-based technique to quantify tissue displacement during acupuncture manipulation in humans. B-scan ultrasonic imaging was performed on the thighs of 12 human subjects at different stages of needle motion, including varying amounts of rotation, downward and upward movement performed with a computer-controlled acupuncture needling instrument. Tissue displacements, estimated using cross-correlation techniques, provided successful mapping and quantitative analysis of spatial and temporal tissue behavior during acupuncture needle manipulation. Increasing amounts of rotation had a significant linear effect on tissue displacement during downward and upward needle motion, as well as on rebound tissue displacement after downward needle movement. In addition to being a valuable tool for studies of acupuncture's mechanism of action, this technique may have applications to other types of needling including biopsies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging the Effect of Acupuncture Needling On Human Connective Tissue in Vivo

Abstract The therapeutic effects of acupuncture have been known for thousands of years. However, only recently have there been significant attempts to understand the mechanism and provide a scientific basis behind these effects. In this paper, ultrasound-based motion estimation techniques are used in order to understand the effect of acupuncture. It is expected that the understanding of the mec...

متن کامل

Tendon motion and strain patterns evaluated with two-dimensional ultrasound elastography.

The purpose of this study was to evaluate the use of 2D ultrasound elastography to assess tendon tissue motion and strain under axial loading conditions. Four porcine flexor tendons were cyclically loaded to 4% peak strain using a servo hydraulic test system. An ultrasound transducer was positioned to image a longitudinal cross-section of the tendon during loading. Ultrasound radiofrequency (RF...

متن کامل

Quasi-Static Ultrasound Elastography.

Elastography is a new imaging modality where elastic tissue parameters related to the structural organization of normal and pathological tissues are imaged. Basic principles underlying the quasi-static elastography concept and principles are addressed. The rationale for elastographic imaging is reinforced using data on elastic properties of normal and abnormal soft tissues. The several orders o...

متن کامل

Computer Vision Elastography

This thesis is concerned with developing a two-dimensional (2D) ultrasound speckle tracking technique to quantify 2D axial and lateral strain fields for studying tissue dynamics. Knowledge of tissue displacement to infer strain characteristics is of major clinical importance. In part, this is due to the lack of simple and accurate non-invasive techniques to measure in vivo strain. The establish...

متن کامل

Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer.

We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultrasound in medicine & biology

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 2004